Mars...

image245


Mars, vad är det med den röda planeten som är så lockande? Mars är förmodligen den våtaste av alla våta drömmar för rymdfantaster. Det naturliga nästa steget för oss människor efter månen. Det finns få mål eller utmaningar för mänskligheten som är mer värdiga än att åka till, utforskar, erövrar och koloniserar mars. Precis som rymdkapplöpningen och apolloprogrammet under 50-70 talet motiverade och lockade till sig de bästa och briljantaste amerika och ryssland hade att erbjuda så skulle även ett marsprojekt kunnat göra för hela världen. En hel generation av mänskligheten skulle inspireras att åstadkomma något historiskt!

Men att väcka västvärlden ur sin slappa dekadens är nog svårt, det är nog först när Kina halar sin flagga på månen och säger mars nästa som vi kommer vakna till. Inte för att det oroar mig att Kina eller Indien hinner dit först, jag är enbart glad om inte hela mänskligheten tappat sin lust att utforska. Det är bara det att jag vill vara delaktig! Ingenting annat hade varit lika spännande som att vara en del av ett sådant projekt, då menar jag inte att vara en av de som är privilegierade nog att faktiskt få åka iväg. Det räcker gott och väl att vara med som forskare i själva utvecklingen av tekniken.


Kina och Indiens framsteg ger iallafall lite hopp, Kina verkar ha ambitioner med sitt rymdprogram. De kanske inte har samma budget som NASA, men NASA åstakommer ingenting längre trots sina miljarder efter miljarder med dollar. De mekar med sin värdelösa rymdfärja vars enda vettiga uppdrag varit att skjuta upp Hubbel teleskopet. NASA har knappt något av värde sen Hubbel, skrotningen av
JIMO demonstrerade hur de famlar runt utan mål och inte kan hänge sig åt något värdigt mål. Pengar utan vision är ingenting värt.

Varför dessa tankar plötsliga tankar om Mars? Jag råkade snubbla in på The mars society  och läste lite artiklar av dess grundare Robert Zubrin, ibland önskar man att rätt män styrde NASA istället för karriärbyråkrater. Här är ett urklipp ur en utmärkt artikel skriven av Zubrin med gott om kritik mot NASA och lite tankar om hur man kan ta sig till mars, snabbt och relativt billigt..

How Do We Get There?


S
ome may say that human exploration of Mars is too ambitious a feat to select as our near-term goal, but that is the view of the faint of heart. From the technological point of view, we're ready. Despite the greater distance to Mars, we are much better prepared today to send humans to Mars than we were to launch humans to the Moon in 1961 when John F. Kennedy challenged the nation to achieve that goal-and we got there eight years later. Given the will, we could have our first teams on Mars within a decade.


The key to success is rejecting the policy of continued stagnation represented by senile Shuttle Mode thinking, and returning to the destination-driven Apollo Mode of planned operation that allowed the space agency to perform so brilliantly during its youth. In addition, we must take a lesson from our own pioneer past and adopt a "travel light and live off the land" mission strategy similar to that which has well-served terrestrial explorers for centuries. The plan to explore the Red Planet in this way is known as Mars Direct. Here's how it could be accomplished.


At an early launch opportunity-for example 2014-a single heavy lift booster with a capability equal to that of the Saturn V used during the Apollo program is launched off Cape Canaveral and uses its upper stage to throw a 40-tonne unmanned payload onto a trajectory to Mars. (A "tonne" is one metric ton.) Arriving at Mars eight months later, the spacecraft uses friction between its aeroshield and the Martian atmosphere to brake itself into orbit around the planet, and then lands with the help of a parachute. This is the Earth Return Vehicle (ERV). It flies out to Mars with its two methane/oxygen driven rocket propulsion stages unfueled. It also carries six tonnes of liquid hydrogen, a 100-kilowatt nuclear reactor mounted in the back of a methane/oxygen driven light truck, a small set of compressors and an automated chemical processing unit, and a few small scientific rovers.


As soon as the craft lands successfully, the truck is telerobotically driven a few hundred meters away from the site, and the reactor is deployed to provide power to the compressors and chemical processing unit. The ERV will then start a ten-month process of fueling itself by combining the hydrogen brought from Earth with the carbon dioxide in the Martian atmosphere. The end result is a total of 108 tonnes of methane/oxygen rocket propellant. Ninety-six tonnes of the propellant will be used to fuel the ERV, while 12 tonnes will be available to support the use of high-powered, chemically-fueled, long-range ground vehicles. Large additional stockpiles of oxygen can also be produced, both for breathing and for turning into water by combination with hydrogen brought from Earth. Since water is 89 percent oxygen (by weight), and since the larger part of most foodstuffs is water, this greatly reduces the amount of life support consumables that need to be hauled from Earth.


With the propellant production successfully completed, in 2016 two more boosters lift off from Cape Canaveral and throw their 40-tonne payloads towards Mars. One of the payloads is an unmanned fuel-factory/ERV just like the one launched in 2014; the other is a habitation module carrying a small crew, a mixture of whole food and dehydrated provisions sufficient for three years, and a pressurized methane/oxygen-powered ground rover.

Upon arrival, the manned craft lands at the 2014 landing site where a fully fueled ERV and beaconed landing site await it. With the help of such navigational aids, the crew should be able to land right on the spot; but if the landing is off course by tens or even hundreds of kilometers, the crew can still achieve the surface rendezvous by driving over in their rover. If they are off by thousands of kilometers, the second ERV provides a backup.


Assuming the crew lands and rendezvous as planned at site number one, the second ERV will land several hundred kilometers away to start making propellant for the 2018 mission, which in turn will fly out with an additional ERV to open up Mars landing site number three. Thus, every other year two heavy lift boosters are launched, one to land a crew, and the other to prepare a site for the next mission, for an average launch rate of just one booster per year to pursue a continuing program of Mars exploration. Since in a normal year we can launch about six shuttle stacks, this would only represent about 16 percent of the U.S. heavy-lift capability, and would clearly be affordable. In effect, this "live off the land" approach removes the manned Mars mission from the realm of mega-spacecraft fantasy and reduces it in practice to a task of comparable difficulty to that faced in launching the Apollo missions to the Moon.


The crew will stay on the surface for 1.5 years, taking advantage of the mobility afforded by the high-powered chemically-driven ground vehicles to accomplish a great deal of surface exploration. With a 12-tonne surface fuel stockpile, they have the capability for over 24,000 kilometers worth of traverse before they leave, giving them the kind of mobility necessary to conduct a serious search for evidence of past or present life on Mars. Since no one has been left in orbit, the entire crew will have available to them the natural gravity and protection against cosmic rays and solar radiation afforded by the Martian environment, and thus there will not be the strong pressure for a quick return to Earth that plagues other Mars mission plans based upon orbiting mother-ships with small landing parties. At the conclusion of their stay, the crew returns to Earth in a direct flight from the Martian surface in the ERV. As the series of missions progresses, a string of small bases is left behind on the Martian surface, opening up broad stretches of territory to human cognizance.


In essence, by taking advantage of the most obvious local resource available on Mars-its atmosphere-the plan allows us to accomplish a manned Mars mission with what amounts to a lunar-class transportation system. By eliminating any requirement to introduce a new order of technology and complexity of operations beyond those needed for lunar transportation to accomplish piloted Mars missions, the plan can reduce costs by an order of magnitude and advance the schedule for the human exploration of Mars by a generation.





image246

Kommentarer

Kommentera inlägget här:

Namn:
Kom ihåg mig?

E-postadress:

URL:

Kommentar:

Trackback